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A B S T R A C T

As decisions require actions to have an effect on the world, measures derived from movements such as using a
mouse to control a cursor on a screen provide powerful and dynamic indices of decision-making. By adapting
classic reach-decision paradigms and deploying them across computers, tablets, and smartphones, we show that
portable touch-devices can sensitively capture decision-difficulty. We see this in pre- and during-movement
temporal and motoric measures across diverse decision domains. We found touchscreen interactions to more
sensitively reflect decision-difficulty during movement compared to computer interactions, and the latter to
be more sensitive before movement initiation. Paired with additional evidence for the flexibility and unique
utility of pre- and during-movement measures, this substantiates the use of widely available touch-devices to
massively extend the reach of decision science.
1. Introduction

Our lives unfold as an amalgamation of decisions made and ac-
tions taken to execute them. Ultimately, these enacted choices shape
our lives and our societies. As a result, the study of human decision
behavior has inspired researchers for centuries, from interest in risk
preference amongst gamblers (Bernoulli, 1954), to willingness to pay
given prior value contexts (Khaw, Glimcher, & Louie, 2017).

Historically, most measures of decision-making use verbal reports
(e.g., Khaw et al. 2017, Payne 1976), observed choices (e.g., Padoa-
Schioppa and Assad 2006), or discrete measurements of behavior such
as reaction time and accuracy (see Schulte-Mecklenbeck et al. 2017
for review). Reaction times, specifically, have been shown to reflect
cognitive conflict during decision-making, with more difficult decisions
leading to longer reaction times (McCarthy & Donchin, 1981; Palmer,
Huk, & Shadlen, 2005; Rangel & Hare, 2010). These approaches, which
focus almost exclusively on the outcome of a decision, fail to account
for the embodied nature of real-world decision-making. In the real-
world, a decision is not made until a body physically enacts the
choice. Recognizing that how we decide is likely as important as
what we decide, researchers have started recording the dynamics of
behavior (Cisek & Kalaska, 2010; Dotan, Meyniel, & Dehaene, 2018;
Dotan, Pinheiro-Chagas, Roumi, & Dehaene, 2019; Gallivan, Chapman,
Wolpert, & Flanagan, 2018; Wispinski, Gallivan, & Chapman, 2020).
Requiring and tracking movement to select between choices, reach-
decision paradigms are a popular method for continuously measuring
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the factors that underlie and bias the decision process. These tasks have
quantified decision behaviors across a variety of choice domains for
both real 3-D reaching (Chapman, Gallivan, Wood, Milne, Culham, &
Goodale, 2010a, 2010b; Gallivan & Chapman, 2014; Gallivan et al.,
2018) and for 2-D computer-mouse tracking (Freeman, 2018; Hehman,
Stolier, & Freeman, 2015; Stillman, Krajbich, Ferguson, & Ferguson,
2020; Stillman, Shen, & Ferguson, 2018).

Computerized reach-decision tasks, with 2-D movements made by
a computer-mouse are a particularly sensitive, flexible, and scalable
technique for the examination of decision processes (Faulkenberry,
Cruise, Lavro, & Shaki, 2016; Freeman, 2018; Hehman et al., 2015;
Koop & Johnson, 2013; Maldonado, Dunbar, & Chemla, 2019; Moher
& Song, 2014; Stillman et al., 2018; and many more). Requiring par-
ticipants to start with their mouse cursor centered at the bottom of the
computer screen and necessitating the selection of one of two (most
commonly) choice options located in the top left or right corners of the
screen, classic mouse-tracking paradigms record the attraction toward
each of the two choice options. This generates a vertical movement
component relatively independent of the competition between options
(though, movement speed has been related to different aspects of the
decision process; Dotan et al., 2018, 2019) and a critical horizontal
movement component that tracks either directly toward one of the
two options when there is no choice-competition, or indirectly between
the two options when the choice-competition is high (Dotan et al.,
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Fig. 1. (A) From left to right, a recreation of previous mouse trajectory results from the three task we employed. Shown are average trajectories for the low (green) and high
(orange) decision-difficulty categories for the Numeric-Size Congruity task (adapted from Faulkenberry et al., 2016), the Sentence Verification task (adapted from Maldonado et al.,
2019’s replication of Dale & Duran, 2011), and the Photo Preference task (adapted from Koop & Johnson, 2013). (B) A representation of trial conditions falling within the low
(green shading) and high (orange shading) decision-difficulty categories for each task, with stimuli examples.
2018, 2019; Stillman et al., 2018). The typical result is a continuum
of direct to indirect trajectories, reflecting the strength of competition
between choice options and thus the relative difficulty of the decision.
Metrics quantifying relative reach directness include the maximum
absolute deviation from a straight trajectory and movement times.
Like pre-movement reaction times, these during-movement measures of
movement time and curvature are also sensitive to decision-difficulty,
with harder decisions resulting in longer duration movements and
greater trajectory curvature (as seen in Fig. 1 and Faulkenberry et al.,
2016; Freeman, 2018; Hehman et al., 2015; Koop & Johnson, 2013;
Maldonado et al., 2019; Stillman et al., 2020, 2018).

Despite reach-decision trajectory-tracking being an important tool
for the understanding of decision-making, these approaches remain
relatively unused outside of research labs. Recognizing that research
deployed online via portable devices could reach a wider and more
diverse audience, there has been a recent movement to assess the relia-
bility of cognitive task administration in these environments (Anwyl-
Irvine, Dalmaijer, Hodges, & Evershed, 2021; Passell et al., 2021;
Pronk, Hirst, Wiers, & Murre, 2022). This has been fueled by new
tools allowing the development of online tasks (e.g., Labvanced (Fin-
ger, Goeke, Diekamp, Standvoß, & König, 2017), Gorilla (Anwyl-
Irvine, Massonnié, Flitton, Kirkham, & Evershed, 2020), jsPsych (de
Leeuw, 2015)) that include easy deployment to diverse, crowd-sourced
participant pools (e.g MTurk (Aguinis, Villamor, & Ramani, 2021),
Prolific (Palan & Schitter, 2017)) and can target a variety of de-
vices (Anwyl-Irvine et al., 2021).

While cognitive tasks measuring accuracy and reaction time
have been replicated on tablets (Frank, Sugarman, Horowitz, Lewis, &
Yurovsky, 2016; Semmelmann et al., 2016) and smartphones (Bazilin-
skyy & de Winter, 2018), it is largely unknown if and how motoric
measures of decision-difficulty can be measured on these portable
devices. To test this question, we developed a reach-decision task
2 
using Labvanced (Finger et al., 2017) to collect continuous cursor
position data, and deployed it to over 300 crowd-sourced participants.
Critically, each of these participants completed the task on one of
three different devices (> 100 participants per device) varying in
size and user-interaction requirements: personal computers (mouse-
based interactions), tablets (finger or stylus-based interactions) and
smartphones (finger-,thumb- or stylus-based interactions).

To provide evidence that a particular device is tracking decision-
difficulty, we chose to adapt and employ three unique reach-decision
tasks. Each of these tasks has been shown to sensitively reflect decision-
difficulty effects through mouse-tracking (see Fig. 1A) and here we
tested if those effects were replicable and then extensible to tablets
and smartphones. The three tasks were: a Numeric-Size Congruity
task (Faulkenberry et al., 2016), a Sentence Verification task (Dale &
Duran, 2011) and a Photo Preference task (Koop & Johnson, 2013).
Based on these previous publications, we were able to select trials
in each task that reflected high decision-difficulty or low decision-
difficulty choices (see Fig. 1B). This established a clear benchmark for
reproduction: a particular device was sensitive to decision-difficulty if
high decision-difficulty trials displayed significantly greater reaction
time, movement time and trajectory curvature scores compared to
low decision-difficulty trials (Dale & Duran, 2011; Faulkenberry et al.,
2016; Koop & Johnson, 2013).

In the Numeric-Size Congruity task, participants were asked to
select which of two digits was larger in value, with the paired digits
being either congruent in numeric and physical size (low decision-
difficulty, e.g., 2 vs. 8) or incongruent in numeric and physical size
(high decision-difficulty, e.g., 2 vs. 8). The Sentence Verification task
asked participants to verify the truth of statements that could be non-
negated (low decision-difficulty, e.g., ‘Cars have tires’) or negated (high
decision-difficulty, e.g., ‘Cars do not have wings’). Finally, the Photo
Preference task asked participants to select which of two dissimilarly-
valenced (low decision-difficulty, e.g., High vs. Low pleasantness) or
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similarly-valenced (high decision-difficulty, e.g., High vs. High pleas-
antness) photos they preferred. Together, we ensured these tasks
spanned a range of decision domains from objective perceptual judg-
ments (e.g., digit discrimination), to semi-subjective conceptual judg-
ments (e.g., truth value of a statement), and finally subjective prefer-
ence judgments (e.g., preference for a particular photograph). These
tasks also intentionally differed in stimulus characteristics (e.g., nu-
meric, alphabetic, image), stimuli (e.g., numerical digits, written state-
ments, photos), and processing requirements (e.g., perceptual dis-
crimination, conceptual discrimination) allowing our results to be
generalizable across remarkably distinct decision domains. Moreover,
our experimental design allowed for a thorough exploration of the
consistency of and relationships between metrics of decision-difficulty
at different time points in the decision process (e.g., before and after
movement-initiation). Finally, by building on previous mouse-tracking
studies we are able to make strong a-priori predictions to provide a
definitive test for using widely available touch-devices as a means of
vastly extending the reach of decision science.

2. Methods

2.1. Participants

All experimental procedures were approved by the University of
Alberta Research Ethics Office. 305 naive Amazon Mechanical Turk
(www.mturk.com) participants took part in the study using either a
computer, tablet or smartphone for a payment of $7 USD. Participation
was restricted on Mechanical Turk to Canada- or U.S-based participants
between 18 and 35 years of age who had an approval rating above 95%
on 100 or more study completions. Participants self-reported age, gen-
der, handedness, visual acuity, English language proficiency, habitual
activities requiring hand-eye coordination, chosen device specifications
and typical use of their chosen device for participation (see Supplemen-
tary Tables 1–3 for a complete demographic and device use summary).
Participants were excluded from analysis based on insufficient (< 50%)
good trials within any of the experimental tasks or in any of the unique
task conditions (see Section 2.3.3 - Data Cleaning).

2.1.1. Computer
101 participants completed the study using a personal computer.

Of those, nine were excluded from analysis for not meeting device
interaction requirements (i.e., did not use a wired or wireless mouse).
A further nine computer users were excluded (see Section 2.3.3 - Data
Cleaning), resulting in data from 83 computer users being analyzed (25
female, 56 male, and 2 who preferred not to say; 𝑀𝑎𝑔𝑒 = 33.75, SD𝑎𝑔𝑒
= 9.35).

2.1.2. Tablet
101 participants completed the study using a tablet. Four were

excluded from analysis for not meeting device interaction requirements
(i.e., did not use finger-, thumb- or stylus-based interactions). A further
nineteen tablet users were excluded (see Section 2.3.3 - Data Cleaning),
leaving data from 79 tablet users to be analyzed (27 female, 51 male,
and 1 nonbinary; 𝑀𝑎𝑔𝑒 = 33.41, SD𝑎𝑔𝑒 = 6.25).

2.1.3. Smartphone
103 participants completed the study using a smartphone. Of those,

twenty-five were excluded (see Section 2.3.3 - Data Cleaning), leaving
78 smartphone users for analysis (26 female, 52 male, and 1 who
preferred not to say; 𝑀𝑎𝑔𝑒 = 33.73, SD𝑎𝑔𝑒 = 6.72).

2.2. Procedure and apparatus

The study was implemented using Labvanced (Finger et al., 2017),
a graphical task builder offering built-in mouse- and finger-tracking,
3 
and temporal response recording compatible with computer, tablet
and smartphone use for online study implementation. The study was
distributed via Amazon Mechanical Turk, and devices used for study
completion were uncontrolled except for requiring use of a separate
mouse (wired or wireless) during computer use, or an Android oper-
ating system and touch-screen device interaction (via finger, thumb or
stylus) during tablet or smartphone use (see Supplementary Tables 2–3
for selected device and interaction details).

Participants completed three reach-decision tasks requiring them to
choose one of two stimuli presented at the top left and top right corners
of their device screen based on a question or statement appearing at the
center of the testing interface (see Fig. 2). The reach-decision tasks (see
Fig. 1) presented Numeric-Size Congruity (adapted from Faulkenberry
et al., 2016), Sentence Verification (adapted from Dale & Duran, 2011;
Maldonado et al., 2019) and Photo Preference (adapted from Koop
& Johnson, 2013) paradigms, each consisting of 84 trials and taking
approximately 15 min to complete.

Each trial first presented a green circular start button labeled
‘‘Touch here’’ at the bottom center of the screen, requiring participants
to navigate their mouse cursor to (Computer) or place their finger,
thumb, or stylus on (Tablet and Smartphone) the button to start the
trial. Touching the start button triggered a three second countdown,
centered on the display screen (Fig. 2). Removing the mouse cursor,
digit or stylus from the start button or the surface of the screen paused
the countdown until touch-contact within the start button had been
re-established. For the Numeric-Size Congruity and Photo Preference
tasks, countdown onset was accompanied by a task-specific question
appearing centered at the top of the display (Fig. 2). Upon countdown
completion, two choice boxes appeared at the upper-left and upper-
right of the screen, each presenting trial-specific choice options. For the
Sentence Verification task, the two choice options appeared coincident
with countdown onset and presented a statement centered at the top of
the screen upon countdown completion (Fig. 2). Participants were free
to select either choice option immediately upon countdown completion.
For Computers, choice selection required participants to move their
mouse cursor inside the choice-box. For Tablets and Smartphones,
participants were required to slide their finger, thumb, or stylus across
the screen to touch their selected choice-box, keeping contact with
the screen at all times. If touchscreen contact was lifted, that trial
was removed from analysis and an error message would appear on
the screen, reading ‘‘Your finger was lifted from the screen as you
moved, and we were unable to track the movement. Please touch
your option now and remember in the future to keep your finger on
the screen’’. When selected, a choice-box was highlighted with a blue
border, the other option and start button disappeared, and a ‘‘Next’’
button appeared centered on the screen. Participants were then free
to click or press on the ‘‘Next’’ button to continue to the next trial,
allowing them to self-pace the experiment.

Trials were randomized within each task and the order of task
presentation was counterbalanced across participants (Fig. 2B). Partic-
ipants were instructed to complete the study in its entirety in a single
session and were provided with detailed instructions outlining each
task before it started. Participants were encouraged to take short breaks
between tasks but had a maximum time limit of ninety minutes to
complete the study.

Labvanced automatically scales the dimensions of the testing inter-
face and its stimuli components to the screen size and resolution of the
device in use, presenting a landscape (800 × 450 pixel, Labvanced co-
ordinates) orientation for computer-based participation and a portrait
(470 × 800 pixel, Labvanced coordinates) orientation for touch-device
based participation. Stimuli-screen proportions remained consistent in-
dependent of device screen size (see Fig. 2C for device-specific design

details).

http://www.mturk.com
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Fig. 2. (A) Overview of study design. Each participant completed a Numeric-Size Congruity task (SC), a Sentence Verification task (SV) and a Photo Preference Task (PP), with task
order counterbalanced between participants. Task-specific instructions were presented prior to each task. (B) All three tasks presented a classic reach-decision paradigm requiring
participants to choose one of two stimuli presented at the top left and top right of their device screen. For SC and PP tasks, countdown onset was accompanied by a question
specific to the task type appearing centered at the top of the display. The SV task presented the two choice options coincident with countdown onset and presented a statement
(rather than a question) upon countdown completion. (C) A comparison of interface arrangements between devices. Shown are representative examples of a computer, tablet and
smartphone (phone) testing interface. All values are reported in pixels. Specific sizes of device screens and interface components observed by participants were dependent on the
size of the device used, but screen to interface component proportions remained constant within each device category.
2.2.1. Numeric-size congruity
The Numeric-Size Congruity task in the current study was adapted

from Faulkenberry, Cruise, Lavro and Shaki’s experiment (Faulkenberry
et al., 2016) examining the dynamics of the size congruity effect. For
each Numeric-Size Congruity trial, the question ‘‘Which number is
larger in value?’’ appeared coincident with the onset of the countdown
timer, centered at the top of the screen (Fig. 2). Following count-
down termination two numbers were displayed simultaneously, one in
each of the upper-left and upper-right choice boxes, and participants
could move to select their preferred choice. Stimuli consisted of the
Arabic numerals 1, 2, 8 and 9 displayed in Arial font and presented
in pairs of different physical size with a 2:1 font size ratio. From
these, six choice-pairs were generated: 1v2, 2v8 and 8v9, with each
pair either congruent in physical and numeric size (the numerically
larger numeral appearing physically larger than its paired counterpart,
e.g., 2v8), or incongruent in physical and numeric size (the numerically
4 
larger numeral appearing physically smaller than its paired counter-
part, e.g., 2v8; see Fig. 1). Within each condition, the numerically
larger number was presented equally often on the left and the right,
counterbalancing side of space effects. This created twelve conditions,
each presented 7 times for a total of 84 trials.

2.2.2. Sentence verification
Adapted from Maldonado, Dunbar and Chemla’s replication (Mal-

donado et al., 2019) of Dale and Duran’s linguistic negation experi-
ment (Dale & Duran, 2011), each Sentence Verification trial presented a
‘‘True’’ and ‘‘False’’ response option in the top-left and top-right corners
of the screen, respectively (Fig. 2). Following countdown termination,
a statement was displayed at the top-center of the screen, prompting
participants to judge whether it was true or false by selecting the
appropriate response option. Statement stimuli consisted of 21 simple
declarative statements manipulated in truth value (true, false) and
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negation (non-negated, negated). Sentence negation was manipulated
by adding ‘‘not’’ to statements (e.g., ‘‘giraffes are tall’’ is non-negated,
while ‘‘giraffes are not tall’’ is negated). Truth value was manipulated
by changing the adjective at the end of the sentence (e.g., ‘‘giraffes are
not short’’ is true, while ‘‘giraffes are not tall’’ is false). Crossing these
factors yielded four sentence conditions where each sentence could be
a true or false statement in either negated or non-negated forms (see
Fig. 1 and Supplementary Table 4). Participants saw all four conditions
of each statement, with the 84 resulting statements presented in a
random order across trials.

2.2.3. Photo preference
Adapted from Koop and Johnson’s experiment (Koop & Johnson,

2013) examining the mental dynamics of preferential choice, each
Photo Preference trial presented the question ‘‘Which photo do you
prefer?’’ centered at the top of the screen coincident with countdown
initiation (Fig. 2). Following countdown termination two images were
then simultaneously displayed in the choice boxes to the upper left and
upper right corners of the screen. As in Koop and Johnson (Koop &
Johnson, 2013), the International Affective Picture System (IAPS; Lang,
2005) was used to develop a stimulus set of paired images using
pleasantness ratings as an analog to photo preference, given equal
levels of arousal (Koop & Johnson, 2013). We therefore selected 168
pictures from the IAPS, categorized as being high in pleasantness (pleas-
antness rating between 7 and 8), average in pleasantness (referred
to as Med; pleasantness rating between 4.50 and 5.50) or low in
pleasantness (pleasantness rating between 2 and 3). Images scoring
greater than 6.15 in arousal were excluded. Selected pictures were
then matched for arousal (difference < 0.30) and paired to create all
pairwise combinations of High, Medium and Low. Pairs not matched in
pleasantness (e.g., High−Med, High−Low, Med−Low) were counterbal-
anced for side of presentation. These unmatched pairs were presented
equally as often as pairs matched in pleasantness (e.g., High−High,
Med−Med, Low−Low; see Fig. 1). This allowed for 14 presentations
of each pleasantness pairing (7 of each unmatched pairing for each
presentation side and 14 for matched pairings), for a total of 84 trials.
Photo choice selections revealed a global preference for photos rated
as more pleasant (𝑀𝑀𝑜𝑟𝑒𝑃 𝑙𝑒𝑎𝑠𝑎𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 78.3%), substantiating claims
that preference is roughly analogous with pleasantness ratings (Koop &
Johnson, 2013). As a result, the analysis included only trials containing
a High pleasantness photo and in which the High photo was selected.
Due to experimental error, half of participants completed a version of
this task that did not counterbalance for side of presentation (i.e., High
photos were always presented on the left). A separate ANOVA showed
no significant difference between these groups for any measure, so
both groups were included in the reported analysis where we collapsed
across photo presentation side.

2.3. Data treatment

2.3.1. Operationalization of trajectory data
Raw movement data acquired through Labvanced was reported

at device- and server latency-dependent sampling frequencies ranging
from 30 Hz to 200 Hz for continuous movements. However, Labvanced
delivers continuous data in an event-driven manner, which means
that new data is generated only when the mouse is moving. As such,
we also calculated the effective sampling rate as the total number
of data points gathered divided by the duration of the entire trial
(𝑀𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝐹 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 11.66 Hz, 9.78 Hz and 9.94 Hz for computer-,
tablet- and smartphone-acquired data, respectively). These values are
lower than Labvanced’s sampling capabilities because our tasks require
participants to have their (likely stationary) cursor within the start
position for 3 consecutive seconds. To allow for more direct compar-
isons and across-participant trajectory averaging, mouse trajectory data
was resampled to 60 Hz, then filtered using a 10 Hz lowpass filter.

Reach onset was defined as the first time the mouse cursor (Computer)

5 
or finger/thumb/stylus (Tablet and Smartphone) ascended to 5% of
its peak velocity within the start button and after countdown had
terminated. Should this velocity threshold not be achieved prior to
leaving the start button, this threshold was iteratively reduced by 5%
until a reach onset could be defined. Reach offset was similarly defined
as the first time the mouse cursor (Computer) or finger/thumb/stylus
(Tablet and Smartphone) velocity descended below a velocity thresh-
old of 5% peak velocity while within one of the two choice option
boxes, with this threshold iteratively increasing by 5% if necessary.
The lowpass parameters and somewhat complicated onset and offset
definitions were employed so as to remain consistent with other reach
and cursor trajectory data we have previously reported (e.g., Bertrand
& Chapman, 2023; Lavoie et al., 2018). The end result of this procedure
was that for each trial we had a consistently sampled, somewhat
smoothed trajectory that comprised the entire reach, including small
but meaningful deviations that happen before the cursor exited and
after it entered the start and choice boxes respectively.

2.3.2. Dependent measures
For each trial, the following behavioral measures were obtained:
Reaction time (milliseconds): time from countdown termination to

reach onset.
Movement time (milliseconds): time from reach onset to reach offset

(choice selection).
Trajectory curvature, or MAD: Within each trial, the perpendicular

distance of the observed trajectory relative to a straight line connecting
the trajectory start and end positions was calculated for each data point.
Maximum absolute deviation (MAD) reports the maximum of these per-
pendicular distances. Straight trajectories produce values approaching
zero while those curving toward the center of the screen were assigned
positive MAD values and those moving away from the center were
assigned negative MAD values.

Within-participant and within-task z-scores were computed for each
dependent measure (reaction time, movement time, trajectory curva-
ture). This standardization of within-participant measures allows for
between-task and between-participant comparisons while controlling
for participant variability and individual reach patterns. All analyses
were conducted on these standardized values. See Table 1 for reporting
of raw and standardized measure values.

2.3.3. Data cleaning
Data cleaning processes were identical independent of device and

were conducted using customized MATLAB scripts. Errors on each trial
could be a combination of reaches with recording errors, reaches with
insufficient data points (fewer than seven unique positions), reaches
with reaction times less than 0.1 s, reaches with movement times >
3 SD above a participants mean movement time, and reaches with
reaction times > 3 SD above a participants mean reaction time. For
Numeric-Size Congruity and Sentence Verification tasks, incorrect trials
were also removed from analysis. As these tasks previously demon-
strated very high levels of accuracy (Dale & Duran, 2011; Faulkenberry
et al., 2016), incorrect responses were considered to arise from partic-
ipant error, with sustained performance errors indicating participant
unreliability. The average percentage of total participant trials falling
within each of these error categories are reported in Supplementary
Table 5. Notably, tablet- and smartphone-use gave rise to more record-
ing errors and reaches with insignificant data points compared to
computer-use (Supplementary Table 5), which underlies higher rates
of participant-level exclusions for those devices (see Section 2.1). This
likely arose as a result of the ability of a tracked digit to easily leave
a touchscreen, while mouse cursors are continuously present onscreen
for recording. A participant was excluded from analysis if, after data
cleaning, they failed to have at least four trials in each condition of
analysis as reported per task. In total, participants whose data was
included for analysis had a mean of 95.6% usable trials for analysis

(Range: 83.7%−98.4%).
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Table 1
Task-specific unstandardized and z-scored means, and a-priori comparison results. Note, *p <.05; **p <.005; ***p <.0005.
2.4. Analysis

The main objective of this analysis was to determine whether task-
specific decision-difficulty effects (as expected by previous studies,
e.g., Dale & Duran, 2011; Faulkenberry et al., 2016; Koop & Johnson,
2013; Maldonado et al., 2019) were reproduced within our adapted
task design and whether these effects were consistent despite dif-
ferences in testing device. To that end, analysis proceeded in three
primary stages: (1) a-priori comparisons to determine reproduction of
antecedent results, (2) within-task, between-device omnibus analysis of
variances (ANOVAs) to determine any effects or interactions arising
due to device differences, and (3) between-device ANOVA to deter-
mine whether there are correlational relationships between measures
of decision-difficulty and if these remain consistent across device.

2.4.1. A-priori comparison procedure
Note, we are careful here to claim we are reproducing prior ef-

fects and not replicating them because there are necessary differences
between the tasks we deployed and those published previously. Most
obviously, in all cases, we are only administering a subset of the con-
ditions presented in each of the original tasks. This is primarily due to
6 
time constraints, but it is also because those studies had domain-specific
empirical goals (e.g. numerical cognition) while here our objective is a
domain-general probe of decision-difficulty. Similarly, given our desire
to present our stimuli on a variety of devices, the stimuli necessarily
differed in size and, in the case of the photo-preference task, even
in identity as we restricted ourselves to less extreme photos than the
original. Finally, each of the previously published studies used different
measures to capture reach curvature (for an excellent summary of
possible measures, see Wirth, Foerster, Kunde, & Pfister, 2020). Here
we wanted to adopt a consistent measure for comparison across tasks.

Within each task, mean standardized reaction time, movement time
and trajectory curvature scores for low and high decision-difficulty
trials were compared using a paired t-test. As these were a-priori tests
based on reproducing known effects, significance was set to p ≤ .05
with no correction for multiple comparisons.

Post Hoc considerations of power. Since we are endeavoring to observe
the strength of decision difficulty effects across tasks and devices,
it is useful to have some measure of benchmarking the previously
reported results. Therefore, a subset of trial conditions were selected
to represent low and high difficulty decisions within each task (see
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Fig. 1) and we use the reported or graphically estimated effect sizes of
reach curvature results as a baseline of comparison. For the Numeric-
Size Congruity task, decision-difficulty followed size-congruity, with
trials incongruent in numerical and physical size categorized as high
in decision-difficulty, while congruent trials were categorized as low
in decision-difficulty (Faulkenberry et al., 2016). This study used Area
Under the Curve (AUC) to measure curvature and reported an average
effect size of d = 1.19 across right and leftward reaches. For the Sen-
tence Verification task, decision-difficulty varied according to negation,
with true statements the greatest negation-driven effects (Dale & Duran,
2011). The current study therefore categorized true negated trials as
representative of a high difficulty decision, and true non-negated trials
as having low decision-difficulty. While not directly reported in the
previous work, the distributions, means, and errors for their trajectory
measure ‘‘x-flips’’ are graphically displayed for these two trial types and
from that we estimated the effect size to be d = 0.55. Finally, decision-
difficulty in the Photo Preference task was driven by the similarity
in pleasantness between photos (Koop & Johnson, 2013). The current
study places trials comparing two photos high in pleasantness in the
high decision-difficulty category, and trials comparing a photo high in
pleasantness and one low in pleasantness in the low decision-difficulty
category. This is closest to the previous study reporting maximum abso-
lute deviation (the measure we use here) for photos with a pleasantness
difference of 1 (high difficulty) versus 6 (low difficulty). Again, the
effect here was estimated graphically to be d = 0.57.

In addition to these power estimates based on previous work, we
lso conducted a post-hoc power sensitivity analysis to provide another
enchmark for effect sizes that are worthy of attention. For each device
ample we used G-Power (Faul, Erdfelder, Lang, & Buchner, 2007) to
stimate that these studies all had 90% power to detect effects of at
east 0.33 for the one tailed comparison of the hard versus easy trials.

.4.2. Within-task ANOVA procedure
Mean standardized reaction time, movement time and maximum

bsolute deviation measures were separately submitted to mixed-model
NOVAs, with within-subject factors determined by individual tasks
esign (see Section 2.2 - Procedure and Apparatus) and between-
ubject factors of device (Computer, Tablet, Smartphone). Specifically,
ithin-subject factors for the Size Congruity task included Congruity

Congruent, Incongruent), Numbers Pairs (1v2, 2v8, 8v9) and Number
resentation Side (Larger Left, Larger Right). Within-subject factors
or the Sentence Verification task included Truth Value (Left/True,
ight/False) and Negation (Negated, Non-negated). Finally, the within-
ubject factor for the Photo Preference task was Valence Pairing (High
High, High - Med, High - Low). This task-specific analysis structure
ligned with analysis models applied in prior studies (Dale & Duran,
011; Faulkenberry et al., 2016; Koop & Johnson, 2013) and allowed
or confirmation of condition factors underlying decision-difficulty ef-
ects (see Supplementary Discussion 1). However, the primary objective
f this series of tests was to look for device differences. As a result, here
e focus only on main effects or interactions involving Device. Full

esults outside this explicit objective can be found in Supplementary
iscussion 1, including results that support the a-priori tests of decision-
ifficulty. Interactions involving Device first collapsed over factors that
id not interact, then were followed up by separating by the factor(s)
ther than Device. Significant (simple) main effects of Device were
xplored with all possible pairwise comparisons.

All multi-way mixed- and RM-ANOVAs were family-wise error cor-
ected using a sequential Bonferroni procedure (Cramer, van Raven-
waaij, Matzke, Steingroever, Wetzels, Grasman, Waldorp, & Wagen-
akers, 2016), and all repeated-measures main effects and interac-

ions were Greenhouse-Geiser corrected to protect against violations of
phericity. Pairwise comparisons were Bonferroni corrected with signif-
cance set at a corrected p ≤ .01. To help contextualize the magnitude
f the Device pairwise comparison effects, we report our effect sizes.

his begs the question as to what effect-size values warrant description
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as a ‘‘moderate’’ or ‘‘large’’ Device effect. Given the comparative lack of
previous work comparing motoric measures of decision-difficulty across
devices it is harder to establish a benchmark. That being said, Wirth
et al. (2020) report Device effects (mouse tracking to touchscreen)
pertaining to decision-difficulty as being significant with d > 0.5 (initi-
tion time) or d > 0.64 (reach curvature) and non-significant with d <

0.2 (initiation time) or d < 0.3 (reach curvature). This roughly aligns
with work from Lakens, Scheel, and Isager (2018) who state, ‘‘...one
might set the Smallest Effect Size of Interest (SESOI) to a standardized
effect size, such as d = 0.5, which would allow one to reject the
hypothesis that the effect is at least as extreme as a medium-sized
effect (Cohen, 1988)’’. Though later they do caution that, ‘‘Relying on
a benchmark is the weakest possible justification of a SESOI and should
be avoided (Lakens et al., 2018)’’.

2.4.3. Between-task ANOVA procedure
To explore the relationship between measures of decision-difficulty,

a Pearson’s correlation coefficient (r) was calculated between each pair
of measures (𝑟𝑀𝐴𝐷,𝑀𝑇 , 𝑟𝑀𝐴𝐷,𝑅𝑇 and 𝑟𝑀𝑇 ,𝑅𝑇 ) indicating the direction
and strength of the relationship across trials for each participant within
each condition, task, and device. Previous work (Erb, Moher, & Mar-
covitch, 2022; Erb, Touron, & Marcovitch, 2020; Erb et al., 2021; Song
& Nakayama, 2008) has shown interesting relationships between these
variables — while there is a quite obvious correlation between move-
ment time and more curved trajectories, there is a less obvious and
more interesting relationship between the pre-movement measure RT
and the during-movement measures MT and MAD. Specifically, prior
work suggests that pre- and during-movement measures of decision-
making function as a tradeoff whereby more time spent deliberating
prior to movement (larger RT) tends to lead to straighter (smaller MAD)
and faster (smaller MT) movements. We aim to look for similar effects
here. As such, mean correlation coefficients were then submitted to a
mixed-model ANOVA with Correlation-type and Task as within-subjects
factors and Device as a between-subjects factor. Corrections and follow-
up procedures were then conducted as described above, except here we
were most interested in the pairwise comparisons between Task.

3. Results

3.1. Tablets and smartphones measure decision-difficulty as well as com-
puter mouse-tracking during reach-decision tasks

For all three tasks, decision-difficulty was quantified as standardized
reaction time, movement time and trajectory curvature (MAD) scores
(see Methods Section 2.3.2 - Dependent Measures). A reproduction
of difficulty-driven effects was considered to have occurred should
high decision-difficulty trials display significantly greater standard-
ized scores than low decision-difficulty trials (Dale & Duran, 2011;
Faulkenberry et al., 2016; Koop & Johnson, 2013). Thus, for each de-
vice (computer, tablet, smartphone) a-priori comparisons (t-tests) were
made between high and low decision-difficulty trials within each task.
A summary of statistics, unstandardized means, and mean differences
between standardized scores are reported in Table 1. Table 1 also shows
the full t-test information including estimates of effect size (Cohen’s d)
and their confidence intervals. For completeness we also include the
t-test results on the unstandardized scores (see Supplementary Table 6)
- which show the identical pattern of results, albeit with some device-
level differences such as responses in the Computer group tending to
have faster absolute reaction and movement times compared to the
touch-device groups (see Table 1).

For the Numeric-Size Congruity and Sentence Verification tasks,
the paired samples t-tests reproduced difficulty-driven for all three
devices and for all three measures of decision-difficulty (see Table 1
and Figs. 3 and 4). Our benchmark comparison of effect size of these
critical decision difficulty effects show that for Numeric-Size Congruity,

our tablet (d = 1.41) and phone (d = 1.58) curvature effect sizes are
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larger than the original study (d = 1.19) while only the computer (d
0.9) is slightly smaller. Notably all of these effects are much larger

han effects we are sufficiently powered to detect (d = 0.33; see Post
oc Considerations of Power paragraph in Section 2.4.1) and even the

owest bound of the computer effect (d = 0.65) is well above this
hreshold. For Sentence Verification, our effect sizes across all devices
computer, d = 0.56; tablet, d = 0.91; phone, d = 0.92) are consistent
ith or exceed those estimated from the previous study (d = 0.55).

Again, all of our results fall within the expected effect size range we
are powered to detect, except for the lower bound of the computer
effect size (d = 0.32), which is marginally below our threshold of d
= 0.33. The Photo Preference task similarly reproduced the expected
difficulty-driven effects across all measures during computer use, as
well as for movement time and trajectory curvature during tablet and
smartphone use (see Table 1 and Fig. 5). However, our curvature effect
sizes (computer, d = 0.38; tablet, d = 0.64; phone, d = 0.32) are
generally lower than those estimated from previous data (d = 0.57)
and are near the threshold (d = 0.33) that our study is powered to
detect. In some cases, confidence intervals approach zero, such as
the lower bound for the smartphone effect size (d = 0.09). Together,
these results suggest that tablets and smartphones are sensitive tools
for capturing information-rich reach-decision data across a variety of
decision domains. Given the consistency of results for the other two
tasks we attribute the divergence between computer and touch-device
reaction time results during Photo Preference decisions to task features.
Only the Photo Preference task required the judgment of a picture and
we believe the fidelity of the picture information is degraded as screen-
size is reduced, driving down the sensitivity to difficulty-driven effects
on smaller displays. The relative increase in sensitivity to decision-
difficulty for Computer reaction times is consistent with the Device
differences described in the next Results subsection.

3.2. Mouse-tracking is more sensitive to decision-difficulty before movement
while touch-device interactions are more sensitive during movement

Having established that all three devices tested capture decision-
difficulty, our second analyses tested how the measurement of decision-
difficulty changed across devices. Mean standardized reaction times,
movement times and trajectory curvature scores for each task were
separately submitted to a mixed-model ANOVA where we focused
on main effects or interactions involving the between-subjects factor
of Device factor and explored any (simple) main effects with pair-
wise comparisons between levels of Device (for results from this anal-
ysis outside this specific scope, including those that fully support
the a-priori decision-difficulty effects described above, see Supple-
mentary Materials 1). These tests revealed that the sensitivity of the
specific metrics of decision-difficulty differed between touch-device and
computer interactions. Specifically, computers showed increased sen-
sitivity to decision-difficulty pre-movement (i.e., reaction time) while
tablets and smartphones showed increased sensitivity during movement
(i.e., movement time and trajectory curvature).

3.2.1. Measure sensitivity pre-movement
Within the Numeric-Size Congruity task, a 2 (Congruity) × 3 (Num-

ber Pairs) × 2 (Number Presentation Side) × 3 (Device) mixed-model
ANOVA assessing standardized reaction times revealed both a main
effect of Device (F (2,237) = 12.69, 𝑝 = 5.81e−6, 𝜂2 = 3.16e−4) and
an interaction between Number Pair and Device (F (4,237) = 14.23,
𝑝 = 3.37e−10, 𝜂2 = .022). A significant main effect of Device was
seen for both 1v2 (F (2,237) = 17.79, 𝑝 = 6.31e−8) and 8v9 Number
Pairings (F (2,237) = 19.77, 𝑝 = 1.15e−8). The 8v9 effect, which is
the hardest number-pair to decide between because it has both the
smallest numeric difference and the smallest relative difference (see
Supplementary Discussion 2), is driven by Computer having the longest
reaction times compared to the touch-devices (Mean𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑆𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒

= 0.18, t = 5.74, 𝑝 = 6.01e−7, d = 0.43; Mean𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑇 𝑎𝑏𝑙𝑒𝑡 = 0.20,
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t = 6.78, 𝑝 = 1.30e−9, d = 0.50). Meanwhile, the 1v2 effect, which
is much easier because of the larger relative difference and presence
of small numbers, is driven by Computer having the shortest reaction
times (𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑆𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 = −0.13, t = 4.26, 𝑝 = 8.77e−4, d = 0.32
and 𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑇 𝑎𝑏𝑙𝑒𝑡 = −0.16, t = 5.26, 𝑝 = 7.74e−6, d = 0.39). Thus,
for reaction time, Computers show greater differentiation between hard
and easy trials, though the effect sizes are on the border or smaller than
our d = 0.5 benchmark so, while statistically significant, may be less
meaningful.

A similar pattern emerged in the Sentence Verification task. A
2 (Truth Value) × 2 (Negation) × 3 (Device) mixed-model ANOVA
revealed a three way interaction Truth × Negation × Device (F (2,237)
= 8.21, 𝑝 = 3.57e−4, 𝜂2 = .005) within reaction time. Based on where
we predicted decision-difficulty to differ (see Fig. 1) our follow-up tests
looked at Negation × Device for True and False statements. We found
a significant interaction only for True statements (F (2,237) = 13.32,
𝑝 = 3.30e−6, 𝜂2 = .022). Breaking this down, Device was significant
for both True-Negated statements (F (2,238) = 8.22, 𝑝 = 3.55e−4)
and True-Non-negated statements (F (2,238) = 14.27, 𝑝 = 1.40e−6),
but in importantly different ways. For the more difficult True-Negated
statements, Computer reaction times were the longest (𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑇 𝑎𝑏𝑙𝑒𝑡
= 0.16, t = 3.76, p = .003, d = 0.59; 𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑆𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 = 0.16, t
= 3.82, p = .002, d = 0.60), but, for the easier True-non-Negated
statements, Computer reaction times were the shortest (𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑇 𝑎𝑏𝑙𝑒𝑡
= −0.18, t = 4.25, 𝑝 = 4.19e−4, d = 0.67; 𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑆𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 = −0.17, t
= 4.11, 𝑝 = 7.53e−4, d = 0.65), with the size of both effects being larger
than our d = 0.5 benchmark. These results confirm that computers
show greater differentiation across levels of decision-difficulty for our
pre-movement measure.

3.2.2. Measure sensitivity during-movement
An opposite pattern of results can be found when analyzing stan-

dardized movement time. Using the same ANOVA model described
above, for Numeric-Size Congruity we found an interaction between
Congruity and Device (F (2,237) = 16.51, 𝑝 = 1.93e−7, 𝜂2 = .009).
Follow-ups showed Device was significant for both Congruent (F (2,237)
= 18.15, 𝑝 = 4.63e−8) and Incongruent trials (F (2,237) = 14.22,
𝑝 = 1.47e−6). Here, Computer showed increased movement times for
Congruent trials (𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑆𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 = 0.11, t = 5.38, 𝑝 = 2.61e−6, d
= 0.26; 𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑇 𝑎𝑏𝑙𝑒𝑡 = 0.088, t = 4.34, 𝑝 = 3.06e−4, d = 0.21) but
decreased movement times for Incongruent trials (𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑆𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 =
−0.11, 𝑡 = 5.20, 𝑝 = 6.08e−6, d = 0.21; 𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑇 𝑎𝑏𝑙𝑒𝑡 = −0.087, t =
4.30, 𝑝 = 3.67e−4, d = 0.21), resulting in less divergence in movement
times between the two difficulty levels compared to touch-devices.
Notably, the effect sizes for these Device comparisons are quite small
(d < 0.5), but it is interesting the pattern here is opposite to the pattern
observed for reaction times, suggesting Computer movement times are
less sensitive to decision-difficulty compared to Tablet and Smartphone
movement times.

Again Sentence Verification movement time results confirm this
finding. Here the same task-specific mixed-model ANOVA described
previously revealed a Negation by Device interaction (F (2,237) =
19.59, 𝑝 = 1.34e−8, 𝜂2 = .027). Follow-ups revealed a main effect of
Device both when statements were Non-negated (F (2,237) = 21.43,
𝑝 = 2.78e−9) and Negated (F (2,237) = 16.82, 𝑝 = 1.48e−7). Pair-
wise comparisons showed Computer having longer movement times
compared to Tablets and Smartphones when statements were Non-
negated (𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑆𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 = 0.15, t = 5.76, 𝑝 = 3.53e−7, d = 0.57;
𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑇 𝑎𝑏𝑙𝑒𝑡 = 0.12, t = 4.54, 𝑝 = 1.33e−4, d = 0.44) and shorter
movement times when statements were Negated (𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑆𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 =
−0.15, t = 5.96, 𝑝 = 1.20e−7, d = 0.59; 𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑇 𝑎𝑏𝑙𝑒𝑡 = −0.11, t =
4.29, 𝑝 = 3.85e−4, d = 0.42). Here the effect sizes are closer to or ex-
ceed our d = 0.5 benchmark and again suggest there is less sensitivity in
movement time between levels of Negation for the Computer condition

compared to touch-devices.
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Fig. 3. Numeric-Size Congruity task results. (A) From left to right, trajectory results for computer, tablet and smartphone (phone) devices within screen size boundaries shown to
scale of a representative physical device size. Light gray lines are each participants’ average trajectory across all trials in this comparison. Mean trajectories across participants are
shown for low (green line, Congruent trials) and high (orange line, Incongruent trials) decision-difficulty trials with the average location of maximum absolute deviation (MAD)
shown with a filled circle. Insets zoom-in on the average point of MAD. Rightward reaches were mirrored to end left, and all reaches were space-normalized and standardized.
Errors shown in the insets are the average of within-subjects standard error. For full trajectory visualization details, see Supplementary Note 1. (B) From top to bottom, average of
participant mean z-scored reaction times (yellow), movement times (pink), and maximum absolute deviation (blue) for computer, tablet and smartphone use. Error bars represent
the averaged standard error of the difference between high and low difficulty means. (C) Pearson’s correlations (r) between measures of decision-difficulty for (from top to bottom)
computer, tablet and smartphone use calculated from each participant and shown as an average. Error bars represent the standard error of the estimated marginal mean.
The during-movement sensitivity observed for touch-devices also
extended to trajectory curvature, but was impacted by the biomechan-
ical properties of using a hand to act directly on a screen. Specifically,
both tablet and smartphone results displayed a side of space biases
where rightward reaches show more trajectory curvature compared to
leftward reaches, matching what is observed in real reaching experi-
ments (Gallivan & Chapman, 2014). Within Numeric-Size Congruity,
this effect is evident in the trajectory curvature results as a Number
Pair Presentation Side × Device interaction (F (2,237) = 16.90, 𝑝 =
1.38e−7, 𝜂2 = .049) where both Left and Right reaches showed main
effects of Device (Left: F (2,237) = 17.07, 𝑝 = 1.19e−7; Right: (F (2,237)
= 16.55, 𝑝 = 1.86e−7), but in opposite directions. For Left reaches,
Tablets and Smartphones show significantly less curvature than Com-
puter trajectories (𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑇 𝑎𝑏𝑙𝑒𝑡 = 0.27, t = 4.70, 𝑝 = 6.47e−5, d
= 0.52; 𝑀 = 0.30, t = 5.34, 𝑝 = 3.30e−6, d = 0.59)
𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑆𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒
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while for Right reaches, Tablets and Smartphones show significantly
more curvature than Computer trajectories (𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑇 𝑎𝑏𝑙𝑒𝑡 = −0.26,
t = 4.66, 𝑝 = 7.96e−5, d = 0.51; 𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑆𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 = −0.29, t =
5.20, 𝑝 = 6.57e−6, d = 0.57). Appreciating that Sentence Verification
choice stimuli were locked to a side of space, the Sentence Verification
trajectory curvature results bolster these directional effect findings,
revealing a Truth × Device interaction (F (2,237) = 15.16, 𝑝 = 6.39e−7,
𝜂2 = .074). Here we also see main effects of Device for both Left/True
(F (2,237) = 13.96, 𝑝 = 1.86e−6) and Right/False reaches (F (2,237) =
16.23, 𝑝 = 22.47e−7) but in opposite directions. For Left/True reaches,
Tablets and Smartphones show significantly less curvature than Com-
puter trajectories (𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑇 𝑎𝑏𝑙𝑒𝑡 = 0.25, t = 4.28, 𝑝 = 4.06e−4, d =
0.59; 𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑆𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 = 0.30, t = 5.10, 𝑝 = 1.03e−5, d = 0.70) while
for Right/False reaches, Tablets and Smartphones show significantly
more curvature than Computer trajectories (𝑀 = −0.24,
𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑇 𝑎𝑏𝑙𝑒𝑡
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Fig. 4. Sentence Verification task results. (A) From left to right, trajectory results for computer, tablet and smartphone (phone) devices within screen size boundaries shown to scale
of a representative physical device size. Light gray lines are each participants’ average trajectory across all trials in this comparison. Mean trajectories across participants are shown
for low (green line, True Non-negated trials) and high (orange line, True Negated trials) decision-difficulty trials with the average location of maximum absolute deviation (MAD)
shown with a filled circle. Insets zoom-in on the average point of MAD. Rightward reaches were mirrored to end left, and all reaches were space-normalized and standardized.
Errors shown in the insets are the average of within-subjects standard error. For full trajectory visualization details, see Supplementary Note 1. (B) From top to bottom, average of
participant mean z-scored reaction times (yellow), movement times (pink), and maximum absolute deviation (blue) for computer, tablet and smartphone use. Error bars represent
the averaged standard error of the difference between high and low difficulty means. (C) Pearson’s correlations (r) between measures of decision-difficulty for (from top to bottom)
computer, tablet and smartphone use calculated from each participant and shown as an average. Error bars represent the standard error of the estimated marginal mean.
t = 4.18, 𝑝 = 6.12e−4, d = 0.58; 𝑀𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟−𝑆𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 = −0.30, t
= 5.09, 𝑝 = 1.06e−5, d = 0.70). Again, and with all effect sizes
surpassing our d = 0.5 benchmark, this suggests that a right hand bias is
more prominent for real touch interactions compared to mouse cursor
movements (see Supplementary Discussion 3 for confirmatory evidence
from the analysis of Movement Time).

Finally, the trajectory results from the Photo Preference task provide
another example of how touch and mouse interactions differ. A 3
(Valence Pairing) × 3 (Device) mixed-model ANOVA revealed a main
effect of Device (F (2,237) = 9.32, 𝑝 = 1.27e−4, 𝜂2 = .022) with
standardized trajectory values for Computer responses (M = −0.0263,
SD = 0.267) found to be different than Tablet (M = −0.116, SD = 0.322;
t = 3.50, p = .001, d = 0.31) and Smartphone responses (M = −0.132,
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SD = 0.036; t = 3.91, 𝑝 = 3.64e−4, d = 0.35), and no significant dif-
ference between the two touch-devices. However, none of these effect
sizes surpassed our d = 0.5 benchmark suggesting these differences
should be interpreted with caution. Moreover, this Device effect did
not significantly interact with decision-difficulty, indicating that this is
a difference in the shape of the produced trajectories based on input
— an idea which aligns with our interpretation that reaches produced
as a result of direct interaction are different than those mediated by a
mouse (see Section 4 - Discussion). Overall, the differences in trajectory
shape and presence of a right-hand bias in the Tablet and Smartphone
results in contrast to Computer results point to a similarity between
touch-device responses and real-world reaching when making choice
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Fig. 5. Photo Preference task results. (A) From left to right, trajectory results for computer, tablet and smartphone (phone) devices within screen size boundaries shown to scale of
a representative physical device size. Light gray lines are each participants’ average trajectory across all trials in this comparison. Mean trajectories across participants are shown for
low (green line, High vs. Low pleasantness trials) and high (orange line, High vs. High pleasantness trials) decision-difficulty trials with the average location of maximum absolute
deviation (MAD) shown with a filled circle. Insets zoom-in on the average point of MAD. Rightward reaches were mirrored to end left, and all reaches were space-normalized
and standardized. Errors shown in the insets are the average of within-subjects standard error. For full trajectory visualization details, see Supplementary Note 1. (B) From top to
bottom, average of participant mean z-scored reaction times (yellow), movement times (pink), and maximum absolute deviation (blue) for computer, tablet and smartphone use.
Error bars represent the averaged standard error of the difference between high and low difficulty means. (C) Pearson’s correlations (r) between measures of decision-difficulty
for (from top to bottom) computer, tablet and smartphone use calculated from each participant and shown as an average. Error bars represent the standard error of the estimated
marginal mean.
selections. Further, these results highlight the increased sensitivity of
during-movement measures during touch-device use.

3.3. Pre- and during-movement measures are flexible, non-redundant car-
riers of decision information

Here, we assess the relationship between our decision-difficulty
measures to demonstrate that pre- and during-movement measures
carry unique decision information. To do so, we obtained a within-
participant correlation coefficient (r) for each combination of measures
(Correlation-Type: 𝑟𝑀𝐴𝐷,𝑀𝑇 vs. 𝑟𝑀𝐴𝐷,𝑅𝑇 vs. 𝑟𝑀𝑇 ,𝑅𝑇 ) within each task
and device. These participant average correlation coefficients were then
compared using a (3) Correlation Type × (3) Task × (3) Device mixed-
model ANOVA. Where correlations between measures are positive,
it would indicate that they carry redundant information. However,
any inverse relationship would demonstrate a push and pull between
measures showing that on any given trial, a best estimate of decision-
difficulty should include both pre- and during-movement measures. The
results of the ANOVA revealed a main effect of Task (F (2,237) = 22.06,
𝑝 = 1.13e−9, 𝜂2 = .009), a very strong main effect of Correlation-
Type (F (2,237) = 601.10, 𝑝 = 1.10e−92, 𝜂2 = .45) and an interaction
between Correlation-Type and Task (F (4,237) = 5.54, 𝑝 = 6.47e−7, 𝜂2
= .004). To follow up, we examined each Task separately and found
a strong Correlation-Type effect in all three (SC: F (2,239) = 302.94,
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𝑝 = 2.85e−69, 𝜂2 = .56; SV: F (2,239) = 242.55, 𝑝 = 6.05e−53, 𝜂2

= 0.50; PP: F (2,239) = 358.29, 𝑝 = 6.13e−76, 𝜂2 = .60). Mean r
values revealed trajectory curvature and movement time (𝑟𝑀𝐴𝐷,𝑀𝑇 ) to
be moderately positively correlated (SC: 𝑀𝑟 = 0.30, SD = 0.24; SV:
𝑀𝑟 = 0.33, SD = 0.26; PP: 𝑀𝑟 = 0.36, SD = 0.23) which intuitively
makes sense — traveling a longer distance (MAD) usually takes a
longer time (MT). In contrast, in each task, reaction time was found
to be weakly inversely correlated with both other measures (SC: 𝑀𝑟
= −0.092, SD = 0.14 and 𝑀𝑟 = −0.11, SD = 0.20 for 𝑟𝑀𝐴𝐷,𝑅𝑇 and
𝑟𝑀𝑇 ,𝑅𝑇 correlations, respectively; SV: 𝑀𝑟 = −0.065, SD = 0.17 and 𝑀𝑟
= 0.006, SD = 0.20 for 𝑟𝑀𝐴𝐷,𝑅𝑇 and 𝑟𝑀𝑇 ,𝑅𝑇 correlations, respectively;
PP: 𝑀𝑟 = −0.065, SD = 0.15 and 𝑀𝑟 = −0.041, SD = 0.19 for
𝑟𝑀𝐴𝐷,𝑅𝑇 and 𝑟𝑀𝑇 ,𝑅𝑇 correlations, respectively). This pattern meant that
the Correlation-Type comparisons always showed differences between
during-movement correlations (𝑟𝑀𝐴𝐷,𝑀𝑇 , stronger and positive) and
the pre- to during-movement correlations (𝑟𝑀𝐴𝐷,𝑅𝑇 and 𝑟𝑀𝑇 ,𝑅𝑇 , weaker
and negative). By task, the results of these pairwise comparisons were,
for 𝑟𝑀𝐴𝐷,𝑀𝑇 vs. 𝑟𝑀𝐴𝐷,𝑅𝑇 : SC: 𝑝 = 3.5e−68, d = 2.00; SV: 𝑝 = 1.06e−67,
d = 1.86; PP: 𝑝 = 8.23e−83, d = 2.19, and for 𝑟𝑀𝐴𝐷,𝑀𝑇 vs. 𝑟𝑀𝑇 ,𝑅𝑇 : SC:
𝑝 = 2.18e−73, d = 2.11; SV: 𝑝 = 2.15e−50, d = 1.53; PP: 𝑝 = 2.04e−76,
d = 2.07. The only slight difference across tasks we observed was that
𝑟𝑀𝑇 ,𝑅𝑇 in the Sentence Verification task was close to zero, rather than
weakly negative, and as such, there was a pairwise difference between
𝑟 and 𝑟 (𝑝 = 7.70e−04, d = −0.33).
𝑀𝑇 ,𝑅𝑇 𝑀𝐴𝐷,𝑅𝑇
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Taken together, this analysis reveals that pre- and during-movement
measures display an intricate relationship independent of their role
in indexing task-specific decision-difficulty that is largely in line with
previously published work (Erb et al., 2022, 2020, 2021; Song &
Nakayama, 2008). That is, while across all tasks and devices, reaction
time, movement time and curvature increase with decision-difficulty
(see Results Section 3.1) on a trial-by-trial basis these measures adapt
to the demands of the task and pre- and during-movement measures
function as non-redundant carriers of decision information. Specifically,
it appears that on trials where participants react more quickly (shorter
RTs) there is a slight increase in movement time and curvature (see
Section 4 - Discussion for further interpretation). It is also notable that
there were no significant Device differences and limited differences due
to Task. This highlights the remarkable stability both of this interplay
between measures and for reach-decisions to track decision-difficulty
across a variety of interface types.

4. Discussion

We investigated whether measuring reach decision-difficulty could
be extended beyond computer use to tablets and smartphones through
the deployment of a three-task online experiment across the three de-
vices. Each task replicated a prior mouse-tracking study used to observe
decision processes (Numeric-Size Congruity task (Faulkenberry et al.,
2016), Sentence Verification task (Dale & Duran, 2011; Maldonado
et al., 2019), Photo Preference task (Koop & Johnson, 2013)), allowing
us to make strong predictions about which trials in each task would
have high versus low decision-difficulty (see Fig. 1).

Task-specific results aligned with previously observed mouse-tracked
outcomes, with high difficulty decisions displaying greater reaction
times, movement times and trajectory curvature compared to low
difficulty decisions. Most excitingly, all of these effects were reproduced
across all devices. Thus, this study demonstrates the robustness of
dynamic measures of decision-making and offers validation for the
use of small, portable devices to collect this movement information.
For the Numeric-Size Congruity task (Faulkenberry et al., 2016), repli-
cation manifested as increased reaction time, movement time and
trajectory curvature for incongruent trials compared to congruent
trials (see Fig. 3). For the Sentence Verification task (Dale & Du-
ran, 2011; Maldonado et al., 2019), the same metrics were increased
on true-negated statements compared to true-non-negated statements
(see Fig. 4). Finally, for the Photo Preference task (Koop & Johnson,
2013), movement time and trajectory curvature were increased for
decisions requiring judgments between photos similar in pleasantness
compared to decisions requiring judgments between photos dissimilar
in pleasantness.

However, these a-priori comparisons also suggested that not all
tasks might be suitable for deployment on smaller devices. Results from
the Photo Preference task show that tablets and smartphones have a
reduced sensitivity to decision-difficulty effects, especially for reaction
time (see Table 1). We believe that this is a reflection of stimuli salience
as screen size is reduced. While the other two tasks presented decision
information as text, the Photo Preference task required participants
to distinguish between two detailed photos, which likely degraded in
stimulus information as the stimulus size decreased. Therefore, our
key message is that all devices are able to track decision-difficulty
but device differences exist and are important to understand. Our sec-
ond cluster of results then specifically interrogated device differences.
The results were clear: computer responses were consistently different
from tablet and smartphone responses. Computer responses showed an
increased sensitivity to decision-difficulty within pre-movement mea-
sures (reaction time) while touch-device responses revealed greater
sensitivity during movement (movement time and trajectory curva-
ture). We speculate this might be due to the different user-interaction
requirements of touch-devices that enforce different ‘reach’ biome-

chanics compared to computer-mouse interactions. This is supported
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by the right-hand bias effects observed when swiping a finger/thumb
or sliding a stylus but not when moving a mouse. This right-hand
bias, also evident in real reaching (Chapman et al., 2010a; Gallivan
& Chapman, 2014), is thought to arise from preferential processing of
stimuli presented on the right of a display you are interacting with,
resulting in less trajectory curvature and faster movement times during
rightward reaches.

Why might smartphones and tablets show effects similar to a real
reach movement? First, real-world movements made to enact mouse
cursor changes on a screen are physically very small. While the cursor
traverses a large on-screen distance, the hand moving the mouse travels
a smaller distance in less time than even a finger on a smartphone
(see non-standardized means in Table 1). These movements across less
space and time produce more ballistic responses (Ghez et al., 1997;
Ghez, Gordon, Ghilardi, Christakos, & Cooper, 1990). As time and space
during movement are at a premium with little of either available to
express in indecision, this requires more of a decision to be resolved
prior to movement initiation (Haith, Huberdeau, & Krakauer, 2015;
Wispinski et al., 2020; Wong & Haith, 2017). The repercussions of front-
loading the decision due to physical movement constraints align with
results demonstrating that the demands of a motor task can directly
influence cognitive processing (e.g., cognitive tuning; Burk, Ingram,
Franklin, Shadlen, & Wolpert, 2014a; Cos, Bélanger, & Cisek, 2011;
Cos, Medleg, & Cisek, 2012; Moher & Song, 2014; Strack, Martin, &
Stepper, 1988). This means that during a computer task, decisions
must be more fully formed before initiating movement, resulting in
reaction time being more sensitive to task difficulty. More broadly,
these results support the idea that the brain is optimized to take
advantage of the affordances of the world it navigates, when more time
and space are available because a physical movement is longer, the final
commitment to a particular choice can be withheld well into movement
execution (Wispinski et al., 2020).

A second explanation for the difference between pre- and during-
movement sensitivity across computers compared to tablets and smart-
phones is the directness of the interaction. When moving a mouse to
control a cursor to select a choice-option the action is physically disso-
ciated from the target we are choosing — the hand is on the table rather
than the screen. But, when we move our finger to touch a choice-option
on a tablet or smartphone our action is directed toward the actual
thing we are selecting. From the perspective of a brain controlling
movement this is likely a profoundly different problem. For example,
physically interacting with an object increases its appeal (Wispinski,
Truong, Handy, & Chapman, 2017) and moving an object toward your
own body can improve your ability to remember it (Truong, Chapman,
Chisholm, Enns, & Handy, 2016). These phenomena are likely related to
the coordinate remapping required when moving a mouse in one plane
to control a cursor in a different plane. This dramatically differs from
the more direct planning available to the brain when mapping a touch
screen target into the action space of the hand and arm (Cunningham &
Welch, 1994; Shabbott & Sainburg, 2010; Wei et al., 2014; Yamamoto,
Hoffman, & Strick, 2006). We would argue that it is this directness of
interaction and movements that traverse longer distances over more
time that explain why touch-devices show increased sensitivity in
measures recorded during movement.

This argument, however, must be made with recognition that design
factors may have contributed to differences in the nature of reaches
between computer and touchscreen users beyond the motoric demands
of device interactions themselves. First, in order to maximize con-
tributions to naturalistic and remote reach-decision paradigms, our
design did not control cursor speed for computer-users, meaning cursor-
based reach speed was both non-equivalent and likely more variable
between participants compared to those using touch devices. Prior
work comparing mouse- to touch-based reach-decisions reported ef-
fects opposite to ours (i.e., greater sensitivity within during-movement
measures for computer-based interactions) when mouse cursor speeds

were controlled to match finger swipe speeds (Wirth et al., 2020).
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Notably, however, these effects were detectable only when unstandard-
ized measures were compared, and responses were comparable when
scores were standardized. Thus, it may be the case that effects were
driven by a subset of trajectories, as is common when the idiosyn-
crasies of participant’s movement patterns are not accounted for (Wulff,
Haslbeck, Kieslich, Henninger, & Schulte-Mecklenbeck, 2019). In our
study, while effects are made more apparent through standardization
(as seen in Table 1), each reported effect continues to be reflected
within unstandardized measures (see Supplementary Table 6 for anal-
ysis of raw data). Additionally, 3-D tracked real-world reaches that
require physical movement towards a target on a vertical plane have
been shown to differ in both movement time and trajectory curvature
compared to reaches performed on a horizontal plane, even when
horizontal movements are mapped onto a vertical plane (as is done with
the mouse), despite both having matched response speed ratios (Moher
& Song, 2019). Thus, there is likely more to the difference in effects
between touchscreen and computers than uncontrolled cursor speeds.

We must also acknowledge the confounding nature of testing surface
aspect ratios between computer and touchscreen use. Presenting reach-
decision tasks in a landscape orientation has been shown to reduce
changes of mind compared to tasks in portrait orientation when reaches
are performed via robotic interface (Burk, Ingram, Franklin, Shadlen,
& Wolpert, 2014b), suggesting criteria to revise initial choices are
impacted by the degree of excursion in reach required to implement
the change. When assessed on a tablet device, however, spatial layout
was found to be largely inconsequential, with overall distance between
trajectory start and end points regardless of orientation impacting
effect capture (Wirth et al., 2020). Even if screen orientation were
controlled, the size of the testing surfaces would naturally induce
differences in distances between choice options, the angular demands
of response initiation, and on-screen distance between trajectory start
and endpoints, all of which have been shown to impact motor consid-
erations and thus decision processes (Burk et al., 2014b; Wirth et al.,
2020). While these design differences are for the most part unavoidable
given our primary objective, the similarity in effects demonstrated
on tablets and smartphones despite size differences between devices
suggest that these factors do not account for all variability. Interface
design factors are also not the only differences between computers and
touchscreens, however. On computers, response mechanics (e.g., cursor
hovering versus clicking to select a choice option) have been shown
to impact consistency of response trajectories (Schoemann, O’Hora,
Dale, & Scherbaum, 2020) and effect sizes (Kieslich, Schoemann, Grage,
Hepp, & Scherbaum, 2020). Response procedures on touchscreen de-
vices, meanwhile, are necessarily constricted by the nature of touch
surface tracking. The matching of response procedure between de-
vices in the current task therefore may have contributed to reduced
sensitivity in during-movement measures during computerized task
completion (Kieslich et al., 2020; Schoemann et al., 2020). It is impor-
tant to re-emphasize that the primary goal of this study was to validate
the use of these tools for rapid online data collection. The strength
and clarity of our overall effects suggest that variability in individuals’
device setups does not significantly hinder the tools’ effectiveness in
this context.

Regardless of the factors underlying the difference between pre- and
during-movement sensitivity across computers compared to tablets and
smartphones, an interesting pattern was revealed wherein sensitivity in
one domain appeared at the expense of sensitivity in the other. This
dynamic interplay between pre- and during-movement measures was
the subject of our third category of results. Despite all three measures
increasing as decision-difficulty increased, our correlational analyses
revealed an inverse relationship between reaction time and during-
movement measures, a push-pull relationship that has been observed
previously (Erb et al., 2022, 2020, 2021; Song & Nakayama, 2008)
This discrepancy between overall task-related effects and trial-by-trial
effects on the measures is compatible with an evidence accumulation

framework of decision-making. Within this framework, evidence is
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noisily accumulated over time until a decision threshold has been
reached (Stillman et al., 2020; Wispinski et al., 2020), signaling the
onset of a movement. More difficult decisions require more evidence
to be accumulated before support for one option reaches this thresh-
old. This takes more time (i.e., longer reaction time), and unresolved
competition impacts movements during choice selection (i.e., longer
and less straight movements; Stillman et al., 2020; Sullivan, Hutch-
erson, Harris, & Rangel, 2015; Wispinski et al., 2020), explaining the
overall effects of decision-difficulty we report. However, when decision-
difficulty is constant, there is still natural variation in reaction times.
If decision processing requirements remain the same, but reaction
time is reduced, there is more unresolved competition at movement
onset. This necessarily shifts decision processes into the movement.
As a result, on a trial-by-trial basis shorter reaction times will map
to longer movement times and trajectories with more curvature —
exactly the inverse relationship we report. Evidence accumulation thus
accounts for both the a-priori main effects of decision-difficulty we
report and the measure correlations we observe. Harder decisions result
in increased reaction times, movement times and trajectory curvature
because evidence accumulates more slowly in these cases. For any given
decision where a set amount of evidence is required, however, there
is a trade-off between pre-movement and during-movement decision
resolution — abbreviating one elongates the other.

5. Conclusion

Across computers, tablets and smartphones, measured by reaction
time, movement time and trajectory curvature, and capturing how
these measures are dynamically related, reach-decision tasks provide
a detailed read-out of decision-making. Given the ubiquitous use of
touch-devices and websites, our validation of these metrics – across
three diverse tasks and in a remote cohort of 240 participants – prove
they are accessible outside the lab and impartial to the device used.
The remarkable consistency of our results offers exciting new ways
to apply these findings to research and industry, providing detailed
knowledge of decision dynamics to domains such as corporate talent
assessment and implicit bias measurement. Our results also offer the
potential to optimize the collection of decision information, indicating
that there are features of a decision and a device that make a certain
combination the most sensitive for a particular task. Decisions and
the movements we make to enact them literally shape our daily lives.
By vastly expanding the accessibility of decision measures to include
anyone with a touch-device we therefore hope to open new doors to
the insights derived from this rich information.
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